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A seller with one item for sale
n agents
Each agent i has a private value v; for the item

— This value represents the willingness-to-pay of the agent; that is,
v; is the maximum amount of money that agent i is willing to pay
in order to buy the item

The utility of each agent is quasilinear in money:
— If agent i loses the item, then her utility is 0

— If agent i wins the item at price p, then her utility isv; — p
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Single-item auctions

General structure of an auction:
— Input: every agent i submits a bid b; (agents = bidders)
— Allocation rule: decide the winner

— Payment rule: decide a selling price

Deciding the winner is easy: the highest bidder
Deciding the selling price is more complicated

— Aselling price of 0, creates a competition among the bidders as to
who can think of the highest number

We are interested in payment rules that incentivize the bidders to bid
their true values

— Truthful auctions that maximize the social welfare
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Second-price auction

Allocation rule: the winner is the highest bidder

Payment rule: the winner pays the second highest bid

Theorem [Vickrey, 1961]

In a second-price auction

(@) itisadominant strategy for every bidder i to bid b; = v;, and
(b) every truthtelling bidder gets non-negative utility

(b) is obvious:

— the selling price is at most the winner’s bid, and the bid of a
truthtelling bidder is equal to her true value
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Second-price auction

For (a), our goal is to show that the utility of bidder i is maximized by
bidding v;, no matter what v; and the bids of the other bidders are

Second highest bid: B = max b;

JEI!

The utility of bidder i is either 0 if b; < B, or v; — B otherwise

Casel:v; < B

Maximum possible utility = 0

Achieved by setting b; = v;

Casell:v; = B

Maximum possible utility = v; — B

Bidder i wins the item by setting b; = v; O



Sponsored search auctions
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k advertising slots
n bidders (advertisers) who aim to occupy a slot
Slot j has a click-through-rate (CTR) a;

— The CTR of a slot represents the probability that the ad placed at
this slot will be clicked on

— Assumption: the CTRs are independent of the ads that occupy the
slots

The slots areranked sothata; = - = ay,
Each bidder i has a private value v; per click

— Bidder i derives utility a; - v; from slot j
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Sponsored search auctions: goals

Truthfulness: It is a dominant strategy for each bidder to bid her true
value
Social welfare maximization: }; v; - x;

— x; is the CTR of the slot that bidder i is assigned to, or 0 otherwise

Poly-time execution: running the auction should be quick

If the bidders are truthful, then maximizing the social welfare is easy:
sort the bidders in decreasing order of their bids

So, the problem is to incentivize them to be truthful, again

Can we extend the ideas we exploited for single-item auctions?
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Generalized second-price auction

Allocation rule: sort the bidders in decreasing order of their bids and
rename themsothatbh; = - = b,

Payment rule: every bidder i < k (who is assigned at slot i) pays the
next highest bid b; 1 per click, and every bidder i > k pays 0

g

U, = 1 (50 — 49)

+100 = 60
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That didn’t work for sponsored search auctions, so what now?

Let’s try to see how the optimal truthful auction should look like, for
any single parameter environment

Input by bidders: b = (b4, ..., b,)
Allocation rule: x(b) = (x1(b), ..., x,,(b))

Paymentrule: p(b) = (p1(b), ..., pn(b))
The utility of bidder i is u;(b) = v; - x;(b) — p;(b)

Focus on payment rules such that p;(b) € [0, b; - x;(b)]
— p;i(b) = 0 ensures that the seller does not pay the bidders
— p;(b) < b; - x;(b) ensures non-negative utility for truthful bidders
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Myerson’s Lemma

An allocation rule x is implementable if there exists a payment rule p
such that (x, p) is a truthful auction

An allocation rule x is monotone if for every bidder i and bid vector
b_;, the allocation x;(z, b_;) is non-decreasing in the bid z of bidder i

Lemma [Myerson, 1981]
(@) Anallocation rule x is implementable if and only if it is
monotone

(b) For every allocation rule x, there exists a unique payment rule
p such that (x, p) is a truthful auction
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* Fix a bidder i, and the bids b_; of the other bidders

* Given that these quantities are now fixed, we simplify our notation:
— x(z) = x;(z,b_;)
- p(2) =pi(z,b_;)
— u(z) = u;(z,b_;)
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* Fix a bidder i, and the bids b_; of the other bidders

* Given that these quantities are now fixed, we simplify our notation:
— x(z) = x;(z,b_;)
- p(2) =pi(z,b_;)
— u(z) = u;(z,b_;)

e Theidea:

— assuming (x, p) is a truthful auction, the bidder has no incentive to
unilaterally deviate to any other bid

— This will give us a relation between x and p, which we can use to
derive an explicit formula for p as a function of x



Proof of Myerson’s Lemma

* Considertwo bids 0 < z < y and assume x is implementable by p



Proof of Myerson’s Lemma

* Considertwo bids 0 < z < y and assume x is implementable by p

* True value = z, deviating bid = y:

u(z) =z u(y)



Proof of Myerson’s Lemma

* Considertwo bids 0 < z < y and assume x is implementable by p

* True value = z, deviating bid = y:

u@z)zuly) ez -x(z2) —pl2)=2z-x(y) —ply)



Proof of Myerson’s Lemma

* Considertwo bids 0 < z < y and assume x is implementable by p

* True value = z, deviating bid = y:

u@z)zuly) ez -x(z2) —pl2)=2z-x(y) —ply)
=p@)—-p@@) =z (x(y) —x(2)
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* Considertwo bids 0 < z < y and assume x is implementable by p

* True value = z, deviating bid = y:

u@z)zuly) ez -x(z2) —pl2)=2z-x(y) —ply)
=p@)—-p@@) =z (x(y) —x(2)

* Truevalue = y, deviating bid = z:

u@y)zu@z) ey -x(y) —py) =y -x(2) —p(2)
Sp»)-p@) <y (x(&y) —x(2)
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Proof of Myerson’s Lemma

* Combining these two, we get:

z-(x(y) —x(2)) <p») —p) <y (x(y) — x(2))

* Thisalso implies that

v—2)- (x() —x(2)) 2 0

* Since 0 < z < y, thisis possible if and only if x is monotone so that

y—z<0andx(y)—x(z) <0

=> (a) is now proved
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Proof of Myerson’s Lemma

 We can now assume that x is monotone

* Assume x is piecewise constant, like in sponsored search auctions

x(z) A

* The break points are defined by the highest bids of the other bidders
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Proof of Myerson’s Lemma

z-(x(y) —x(2) < p») —p@) <y (x(y) — x(2))
* By fixing z and taking the limit as y tends to z, we have that
jumpofpatz =z (jumpofxatz)
* Therefore, we can define the payment of the bidder as

p(b) = Xyeropy - jumpof x aty)

where y enumerates all break points of x in [0, b]
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Proof of Myerson’s Lemma

* Example:
x(z) A
X9 i i
X1 :
I ,
0 Y1 y, b Z

p(b) = ZyE[O,b]y (Jumpofxaty) =y;-x
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* Example:

x(2) A

p(b) = Xyepopy ¥ - Gumpofxaty) =y - x3 + ¥z - (X2 — X1)



Proof of Myerson’s Lemma

x(z) A
<A 1 -~ .
___________ =
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___________ i H
> x(z) A
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________________________ — :
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Sponsored search auctions

p(b) = 2yefo,p] Y - qump of x aty)

* yenumerates the break points: the bids that are smaller than b
— In other words, y enumerates the slots from worst to best
* jump of x at y: the difference in CTR between two consecutive slots

* The total payment of the i-th highest bidder is:

k
pi(b;,b_;) = z bjy1(aj — ajiq)
=
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Summary

Auctions: allocation rule + payment rule

An allocation rule is implementable is there exists a payment rule,
so that together they define a truthful auction

An allocation rule is monotone, if larger bids give more stuff

Single-item auctions: first-price is not truthful, second-price is
truthful and maximizes the social welfare (sells to the bidder with
the highest value)

Sponsored search auctions: generalized second-price auction is
not truthful

Myerson’s Lemma: a characterization of truthful mechanisms in
single-parameter environments

Using Myerson’s Lemma we can design a truthful sponsored search
auction



